Technical documentation that writes itself

Technical documentation that writes itself

Technical documentation that writes itself

AI-powered documentation generation for data processing and analytics systems. Understand your code, onboard faster, and stay compliant.

AI-powered documentation generation for data processing and analytics systems. Understand your code, onboard faster, and stay compliant.

ClusterLoop w factors

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122

123

124

125

/*library statement*/

libname storage '/folders/myfolders/';




proc print data=storage.census_factors (obs=10);

run;


proc standard data=storage.dmefzip replace out=prefactor;

run;

proc sort data=prefactor;

by zipcode;

run;



options pageno=1;

%macro loop (c);

options mprint ;


%do s=1 %to 10;

%let rand=%eval(100*&c+&s);

proc fastclus data=storage.census_factors out=clus&Rand cluster=clus maxclusters=&c

converge=0 maxiter=100 replace=random random=&Rand;

ods output pseudofstat=fstat&Rand (keep=value);

var factor1--factor5;

title1 "Clusters=&c, Run &s";

run;

title1;


proc freq data=clus&Rand noprint;

tables clus/out=counts&Rand;

where clus>.;

run;

proc summary data=counts&Rand;

var count;

output out=m&Rand min=;

run;


data Stats&Rand;

label count=' ';

merge fstat&rand

m&rand (drop= _type_ _freq_)

;

Iter=&rand;

Clusters=&c;

rename count=minimum value=PseudoF;

run;


proc append base=ClusStatHold data=Stats&Rand;

run;

%end;

options nomprint;

%Mend Loop;




%Macro OuterLoop;

proc datasets library=work;

delete ClusStatHold;

run;

%do clus=4 %to 8;

%Loop (&clus);

%end;

%Mend OuterLoop;


%OuterLoop;





proc ggplot data=ClusStatHold;

plot pseudoF*minimum/haxis=axis1;

symbol value=dot color=blue pointlabel=("#clusters" color=black);

axis offset=(5,5)pct;

title "F by Min for Clusters";

run;

title;

quit;




%let varlist=INCMINDX PRCHHFM PRCRENT PRC55P PRC65P HHMEDAGE PRCUN18 PRC200K OOMEDHVL PRCWHTE;



/*descriptive stats for clusters*/


proc sort data=clus610;

by zipcode;

run;


data cluster_vars;

merge clus610 (keep=zipcode factor1--factor5 clus in=a) prefactor (in=b);

by zipcode;

run;


proc print data=cluster_vars (obs=10);

run;


proc summary data=cluster_vars nway;

class clus;

var &varlist;

output out=ClusStats mean=;

run;


proc summary data=cluster_vars nway;

where clus>.;

var &varlist;

output out=OverallStats mean=;

run;


proc print data=clusStats;run;

proc print data=OverallStats;run;


data stats;

set ClusStats

OverallStats

;

run;


proc print data=stats;run;

ClusterLoop w factors

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122

123

124

125

/*library statement*/

libname storage '/folders/myfolders/';




proc print data=storage.census_factors (obs=10);

run;


proc standard data=storage.dmefzip replace out=prefactor;

run;

proc sort data=prefactor;

by zipcode;

run;



options pageno=1;

%macro loop (c);

options mprint ;


%do s=1 %to 10;

%let rand=%eval(100*&c+&s);

proc fastclus data=storage.census_factors out=clus&Rand cluster=clus maxclusters=&c

converge=0 maxiter=100 replace=random random=&Rand;

ods output pseudofstat=fstat&Rand (keep=value);

var factor1--factor5;

title1 "Clusters=&c, Run &s";

run;

title1;


proc freq data=clus&Rand noprint;

tables clus/out=counts&Rand;

where clus>.;

run;

proc summary data=counts&Rand;

var count;

output out=m&Rand min=;

run;


data Stats&Rand;

label count=' ';

merge fstat&rand

m&rand (drop= _type_ _freq_)

;

Iter=&rand;

Clusters=&c;

rename count=minimum value=PseudoF;

run;


proc append base=ClusStatHold data=Stats&Rand;

run;

%end;

options nomprint;

%Mend Loop;




%Macro OuterLoop;

proc datasets library=work;

delete ClusStatHold;

run;

%do clus=4 %to 8;

%Loop (&clus);

%end;

%Mend OuterLoop;


%OuterLoop;





proc ggplot data=ClusStatHold;

plot pseudoF*minimum/haxis=axis1;

symbol value=dot color=blue pointlabel=("#clusters" color=black);

axis offset=(5,5)pct;

title "F by Min for Clusters";

run;

title;

quit;




%let varlist=INCMINDX PRCHHFM PRCRENT PRC55P PRC65P HHMEDAGE PRCUN18 PRC200K OOMEDHVL PRCWHTE;



/*descriptive stats for clusters*/


proc sort data=clus610;

by zipcode;

run;


data cluster_vars;

merge clus610 (keep=zipcode factor1--factor5 clus in=a) prefactor (in=b);

by zipcode;

run;


proc print data=cluster_vars (obs=10);

run;


proc summary data=cluster_vars nway;

class clus;

var &varlist;

output out=ClusStats mean=;

run;


proc summary data=cluster_vars nway;

where clus>.;

var &varlist;

output out=OverallStats mean=;

run;


proc print data=clusStats;run;

proc print data=OverallStats;run;


data stats;

set ClusStats

OverallStats

;

run;


proc print data=stats;run;

ClusterLoop w factors

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122

123

124

125

/*library statement*/

libname storage '/folders/myfolders/';




proc print data=storage.census_factors (obs=10);

run;


proc standard data=storage.dmefzip replace out=prefactor;

run;

proc sort data=prefactor;

by zipcode;

run;



options pageno=1;

%macro loop (c);

options mprint ;


%do s=1 %to 10;

%let rand=%eval(100*&c+&s);

proc fastclus data=storage.census_factors out=clus&Rand cluster=clus maxclusters=&c

converge=0 maxiter=100 replace=random random=&Rand;

ods output pseudofstat=fstat&Rand (keep=value);

var factor1--factor5;

title1 "Clusters=&c, Run &s";

run;

title1;


proc freq data=clus&Rand noprint;

tables clus/out=counts&Rand;

where clus>.;

run;

proc summary data=counts&Rand;

var count;

output out=m&Rand min=;

run;


data Stats&Rand;

label count=' ';

merge fstat&rand

m&rand (drop= _type_ _freq_)

;

Iter=&rand;

Clusters=&c;

rename count=minimum value=PseudoF;

run;


proc append base=ClusStatHold data=Stats&Rand;

run;

%end;

options nomprint;

%Mend Loop;




%Macro OuterLoop;

proc datasets library=work;

delete ClusStatHold;

run;

%do clus=4 %to 8;

%Loop (&clus);

%end;

%Mend OuterLoop;


%OuterLoop;





proc ggplot data=ClusStatHold;

plot pseudoF*minimum/haxis=axis1;

symbol value=dot color=blue pointlabel=("#clusters" color=black);

axis offset=(5,5)pct;

title "F by Min for Clusters";

run;

title;

quit;




%let varlist=INCMINDX PRCHHFM PRCRENT PRC55P PRC65P HHMEDAGE PRCUN18 PRC200K OOMEDHVL PRCWHTE;



/*descriptive stats for clusters*/


proc sort data=clus610;

by zipcode;

run;


data cluster_vars;

merge clus610 (keep=zipcode factor1--factor5 clus in=a) prefactor (in=b);

by zipcode;

run;


proc print data=cluster_vars (obs=10);

run;


proc summary data=cluster_vars nway;

class clus;

var &varlist;

output out=ClusStats mean=;

run;


proc summary data=cluster_vars nway;

where clus>.;

var &varlist;

output out=OverallStats mean=;

run;


proc print data=clusStats;run;

proc print data=OverallStats;run;


data stats;

set ClusStats

OverallStats

;

run;


proc print data=stats;run;

archiva.ai

Clustering Analysis and Descriptive Statistics for Census Data

Introduction

This code is designed to perform clustering analysis on a census dataset and calculate descriptive statistics for each cluster and overall. It is useful for data preprocessing and targeted marketing strategies.

Code Contents

  1. Set library location for storage

  1. Print first 10 observations of census factors dataset

  2. Standardize data and output to new dataset

  3. Sort data by zipcode

  4. Set option for page number

  5. Create macro to loop through a specified number of clusters

  6. Set option for macro to print

  7. Loop through specified number of clusters

  8. Create outer loop to run through multiple number of clusters

  9. Delete previous dataset

  10. Merge datasets and calculate descriptive statistics for each cluster

  11. Print first 10 observations of merged dataset

  12. Calculate overall descriptive statistics for all clusters

  13. Merge overall and cluster statistics

  14. Print merged dataset

View code

archiva.ai

Clustering Analysis and Descriptive Statistics for Census Data

Introduction

This code is designed to perform clustering analysis on a census dataset and calculate descriptive statistics for each cluster and overall. It is useful for data preprocessing and targeted marketing strategies.

Code Contents

  1. Set library location for storage

  1. Print first 10 observations of census factors dataset

  2. Standardize data and output to new dataset

  3. Sort data by zipcode

  4. Set option for page number

  5. Create macro to loop through a specified number of clusters

  6. Set option for macro to print

  7. Loop through specified number of clusters

  8. Create outer loop to run through multiple number of clusters

  9. Delete previous dataset

  10. Merge datasets and calculate descriptive statistics for each cluster

  11. Print first 10 observations of merged dataset

  12. Calculate overall descriptive statistics for all clusters

  13. Merge overall and cluster statistics

  14. Print merged dataset

View code

archiva.ai

Clustering Analysis and Descriptive Statistics for Census Data

Introduction

This code is designed to perform clustering analysis on a census dataset and calculate descriptive statistics for each cluster and overall. It is useful for data preprocessing and targeted marketing strategies.

Code Contents

  1. Set library location for storage

  1. Print first 10 observations of census factors dataset

  2. Standardize data and output to new dataset

  3. Sort data by zipcode

  4. Set option for page number

  5. Create macro to loop through a specified number of clusters

  6. Set option for macro to print

  7. Loop through specified number of clusters

  8. Create outer loop to run through multiple number of clusters

  9. Delete previous dataset

  10. Merge datasets and calculate descriptive statistics for each cluster

  11. Print first 10 observations of merged dataset

  12. Calculate overall descriptive statistics for all clusters

  13. Merge overall and cluster statistics

  14. Print merged dataset

View code

How Archiva works

How Archiva works

How Archiva works

Connect & Stay updated

Simply connect your SAS codebase to Archiva. Watch your documentation update automatically with every commit, ensuring it's always in sync with your code.

AI-powered analysis

Archiva's AI analyzes your code line-by-line, writing detailed technical documentation for every change.

Deep code understanding

Leveraging data lineage, code statistics, and your system's specifics, Archiva generates accurate technical documentation.

Interactive exploration

Ask Archiva anything about your code and data connections..

Connect & Stay updated

Simply connect your SAS codebase to Archiva. Watch your documentation update automatically with every commit, ensuring it's always in sync with your code.

AI-powered analysis

Archiva's AI analyzes your code line-by-line, writing detailed technical documentation for every change.

Deep code understanding

Leveraging data lineage, code statistics, and your system's specifics, Archiva generates accurate technical documentation.

Interactive exploration

Ask Archiva anything about your code and data connections..

Connect & Stay updated

Simply connect your SAS codebase to Archiva. Watch your documentation update automatically with every commit, ensuring it's always in sync with your code.

AI-powered analysis

Archiva's AI analyzes your code line-by-line, writing detailed technical documentation for every change.

Deep code understanding

Leveraging data lineage, code statistics, and your system's specifics, Archiva generates accurate technical documentation.

Interactive exploration

Ask Archiva anything about your code and data connections..

The future of analytical codebases' documentation

The future of analytical codebases' documentation

The future of analytical codebases' documentation

Effortless collaboration

Share clear and up-to-date documentation with your entire research team, fostering collaboration and knowledge transfer.

Error-free & consistent docs

Eliminate human error in documentation. Archiva ensures consistent updates and formatting, capturing every detail of your code.

Expert oversight

Review and refine documentation generated by Archiva. Maintain complete control with the option to manually override when needed.

More time for research

Free yourself from tedious documentation tasks. Archiva saves you time and allows you to focus on scientific breakthroughs.

Unlock the secrets of your codebase

Unlock the secrets of your codebase

Unlock the secrets of your codebase

Get a free trial and experience effortless code documentation whether you're a large enterprise or a growing startup.

Get a free trial and experience effortless code documentation whether you're a large enterprise or a growing startup.

Get a free trial and experience effortless code documentation whether you're a large enterprise or a growing startup.

Where can I deploy Archiva?

How does the hybrid deployment ensure data security?

Which AI models does Archiva use?

How much does Archiva cost?

How can Archiva save me money?

Where can I deploy Archiva?

How does the hybrid deployment ensure data security?

Which AI models does Archiva use?

How much does Archiva cost?

How can Archiva save me money?

Where can I deploy Archiva?

How does the hybrid deployment ensure data security?

Which AI models does Archiva use?

How much does Archiva cost?

How can Archiva save me money?